Latency Hiding in Dynamic Partitioning and
Load Balancing of Grid Computing Applications”

Sajal K. Das, Daniel J. Harvey
Dept. of Computer Science & Engineering
The University of Texas at Arlington
Arlington, TX 76019-0015, USA
{das,harvey}@cse.uta.edu

Abhstract

The Information Power Grid (IPG) concepl developed
by NASA is aimed to provide a metacompuling platform
for large-scale distributed computations, by hiding the in-
tricacies of a highly heterogeneous environment and yei
maintaining adequate security. In this paper, we propose a
latency-tolerant partitioning scheme that dynamically bal-
arices processor workloads on the IPG, and minimizes data
movement and runtime communication. By simulating an
unsteady adaptive mesh application on a wide area net-
work, we study the performance of our load balancer un-
der the Globus environment. The number of IPG nodes,
the number of processors per node, and the interconneci
speeds are paramelerized to derive conditions under which
the IPG would be suitable for parallel distributed process-
ing of such applications. Experimental results demonstrale
that effective solutions are achieved when the IPG nodes
are connected by a high-speed asynchronous interconnec-

tion nenwork,

1. Introduction

The Information Power Grid (IPG) infrastruciure has
been developed by NASA and other collaborative partners
to harness the power of geographically distributed resources
(computers, databases, and human expertise) in order to
solve large-scale computational problems. Appiications
that would benefit from such an infrastructure inctude:

o Desktop ccupling to remote supercompuiers 5 as o
provide access to large databases and high-end graph-
ics facilities [9].

*This work was supported by NASA Ames Research Center under Co-
operative Agreement Number NCC 2-5393.

Rupak Biswas
NAS Systems Division
NASA Ames Research Center
Moffett Field, CA 94035-1000, USA
rbiswas@nas.nasa.gov

o User access to sophisticated instruments threugh re-
mote supercomputer connections utilizing virtual real-
ity techniques [8].

e Remote interactions with supercomputer simula-
tions [10, 11].

Several atiempts have recently been made to develop
what are called computational grid capabiiities and/or im-
plementations [14]. For example, the Condor syster [19]
is developed tc nanage research studies at workstations
around the world. However, it did not adequately deal with
the security issues involved. Other grid-based sysiems in-
clude Nimrod [1], NetSolve [4], NEOS [5], Legion [i5],
and CAVERN [18]. The Globus Metzcomputing Infrastruc-
ture Toolkit [13] successfully provides a portable virtual
machine environment. It supports mechanisms for shar-
ing remote resources, provides adequate security, and al-
lows MPI-based message passing. Due io its portable and
modular nature. Globus has been chosen by NASA as the
middleware tc implemént the IPG.

So far, limited studies have been performed to determine
the viability of parallel distributed computing on the IPG.
In {2], latency tolerance and load balancing modifications
were implemented for a CFD application to compensate
for slower communication speed. Results showed that the
application ran faster under Globus on two IPG nodes of
four processors each than on a single tightly-coupled ma-
chine of eight processors. However, this result is clouded
in iiat asynchronous message passing was supported over
the high-speed link but not within the single piatform. With
a goal to make more informative conclusions, in this pa-
per we simulate an unsteady adaptive mesh application on 2
wide area network. The aumber of IPG nodes, the number
of processors per node, and the interconnect speeds are pa-
rameterized to derive conditions under which the IPG would
be suitabic for parallel distributed processing of such appli-
cations.

Earlier. we proposed two different load balancing ap-
proaches with an unsteady adaptive mesh as the test case
application. The first approach, called PLUM [21], is an
architecture-independent framework which globally parti-
tions the computational mesh after each adaptation and de-
termines whether re-balancing the load would lead to re-
duced total execution time. If an improvement in the load
balance can be achieved, PLUM utilizes an effective remap-
ping algorithm to minimize the required data movement.
Application processing is temporarily suspended during the
partitioning and data remapping operations. Utilization of a
parallel graph partitioner like ParMeTiS [17] gives effective
results.

The second approach, called Symmetric Broadcast
Networks (SBN) [7], gives a general-purpose topology-
independent solution to dynamic load balancing. A salient
feature of this approach is that it balances processor work-
loads while the application is running. Therefore, it is able
to hide the high data migration overhead, albeit at the cost of
increased interprocessor communication. Results reported
in [3] indicate that both PLUM and SBN approaches have
their relative merits, and that they achieve excellent load
batance with minimal extra overhead.

Let us summarize the contributions of this paper. We
propose a novel partitioner, called MinEX, that optimizes
the two important steps of PLUM (balancing and remap-
ping) as part of the partitioning process. Instead of attempt-
ing to only balance the load like most other partitioners,
the objective of MinEX is to minimize the total runtime of
the application. This approach counters the possibility that
perfectly balanced loads can still incur excessive communi-
cation and redistribution costs while the application is being
processed. MinEX is also used to experiment with the la-
tency tolerant techniques on the IPG. Our experimental re-
sults show that MinEX reduces the number of elements mi-
grated by PLUM, and also lowers the percentage of edges
cut by SBN. For example, for 32 partitions with our test
case, PLUM showed an edge cut of 10.9% and redistributed
63,270 mesh elements. The corresponding values for the
SBN-based approach were 36.5% and 19,446. In contrast,
the MinEX partitioner values were 20.9% and 30,548 re-
spectively. Thus MinEX attempts to optimize both commu-
nication and remapping costs, and hence is found to be an
effective approach to latency hiding in dynamic load bal-
ancing for grid computing.

This paper is organized as follows. Section 2 introduces
the computational application to be tested and determines
its scalability. Section 3 describes the new MinEX parti-
tioner. Section 4 describes the experimental study, analyzes
the obtained results and draws conclusions as to the use of
the IPG for this and similar applications. Section 5 con-
cludes the paper.

2. Test Case Scenario

Many computational problems are often modeled as an
unstructured mesh of vertices and edges. To capture evolv-
ing features, the mesh topology is also frequently adapted.
For an efficient parallel implementation, this leads to dy-
namic load balancing in the sense that mesh objects will
have to be reassigned after each adaptation phase to re-
balance the workload among processors. It is critical to
minimize the overhead associated with remapping data sets,
and to reduce the communication between processors at the
next solution step. These goals are particularly important in
the IPG context where communication bandwidth between
nodes are likely to be much smaller than those within a sin-
gle multiprocessor machine.

The computational mesh considered for our experiments
in this paper simulates an unsteady environment with a
strongly time-dependent adapted region. As depicted in
Fig. 1, a shock wave is propagated through an initial grid
to produce the desired effect. The computational mesh is
processed through nine adaptations by moving a cylindri-
cal volume across the domain with constant velocity. Grid
elements within the cylindrical volume are refined while
previously-refined elements are coarsened in its wake. Dur-
ing the processing, the size of the mesh increases from
50,000 elements to 1,833,730 elements.

Figure 1. Initial and adapted meshes (after lev-
els 1 and 5) for the simulated experiment.

To realistically simulate the overhead associated with
an adaptive mesh computation, two weights are associated
with each mesh vertex and one weight with each mesh edge.
These weights respectively reflect the number of time units

Number of Processors

32] 64 | 128 256 [512 1024 | 2048

[Latency 2 [4] 8 | 16
Max. Tolerance | 3777 | 1824 | 1148 614
No Tolerance 4547 | 3193 | 1699 | 1033

324168 8| 72| 58 51 57
558 {302 | 173 | 123 | LIS 109 | 103

Table 1. Scalability analysis of the test application.

required for computation, data remapping, and communi-
cation cost. The total time required to process the vertices
assigned to a processor p must take into account all these
three metrics as defined below.
Processing Weight, Wgt*, is the computational cost to pro-
cess a vertex v.
Redistribution Cost, Remapy, is the overhead to copy the
data set associated with v from p to another processor. This
cost incurred at p includes operations like data packing and
initiating transmission. The redistribution cost incurred by
the processor receiving v is the sum of the communication
cost and the operations of unpacking and merging the data
into existing data structures. Clearly, if the data set for v is
already assigned to p, no redistribution cost is incurred.
Communication Cost, Comm}, is the cost to interact with
all vertices adjacent to v but whose data sets are not local to
p. Thus, if the data sets of all the vertices adjacent to v are
also assigned to p, the communication cost, Commyg, is 0.
We also use six additional metrics which are defined be-
low.
Weighted Queue Length, QWgt(p), is the total cost to pro-
cess the vertices assigned to p. It is defined as:

QWgt(p) = > (Wgt® + Comm;, + Remapy).
v assigned to p

Total System Load, QWgtTOT, is the sum of QWgt(p) over
all processors. This metric is used in Section 3.2 to decide
whether it is appropriate to reassign a vertex from one pro-
cessor to another.
Heaviest Load, MaxQWgt, is the maximum value of
QWgt(p) over all processors, and indicates the total time
required to process the application.
Lightest Load, MinQWgt, is the minimum value of
QwWg t(p) over all processors, and indicates the workload of
the most lightly-loaded processor.
Average Load, AvgQwWgt, is QWgtTOT /P, where P is the
total number of processors.
Load Imbalance Factor, Load Imb, represents the quality
of the partitioning and is defined as MaxQWgt / AvVgQWgt.
Table 1 shows the scalability of our test application
where P is varied from 2 to 2048. The data was obtained
by simulating the application (details in Section 4). Each
column reflects non-dimensionalized MaxQWgt values in
thousands. The first row of the table assumes that maxi-
mum latency tolerance is achieved, while the second row

assumes that no latency tolerance is achieved. By maximum
latency tolerance, we mean the ability to utilize all avail-
able processors to overlap communication and redistribu-
tion costs. Further explanations are provided in Section 3.
Table 1 shows that this application can scale to over 128
processors with linear speedup, and therefore is a good can-
didate for an IPG implementation.

3. MinEX: A New Partitioner

Previous studies with this mesh application under
PLUM utilized a variety of general partitioners such as
ParMeTiS [17], UAMeTiS [22], DAMeTiS [22], Jostle-
MS [23], and Jostle-MD [23]. Note that UAMeTiS,
DAMEeTiS, and Jostle-MD are diffusive schemes designed
to modify existing partitions to produce a processor alloca-
tion; whereas PMeTi$ and Jostle-MS are global partitioners
which make no assumptions about the original mesh distri-
bution. Although all these partitioners achieve good load
balance while minimizing communication overhead, they
fail to consider the cost of moving data between proces-
sors. A unique feature of PLUM is to address this draw-
back through the use of an efficient heuristic procedure for
redistributing data to assigned processors.

In the following, we design, implement, and analyze
a novel partitioner, called MinEX, that optimizes compu-
tational, communication, and data remapping costs. We
also redefine the partitioning goal from producing balanced
loads to minimizing MaxQWgt. No direct comparisons
with other existing partitioners mentioned above are pos-
sible because MinEX also considers the data redistribution
cost while partitioning the computational mesh.

3.1. Design Principles

MinEX can be classified as a diffusive multilevel parti-
tioner. Diffusive algorithms [6] utilize an existing partition
as a starting point instead of partitioning from scratch. The
multi-level approach, originally introduced in [16], parti-
tions the graph in three steps — contraction, partitioning,
and refinement — each of which is described below.

Similar to other multilevel partitioners, the first step in
MinEX is to contract the mesh to a reasonable size. How-
ever, instead of repeatedly contracting the mesh in halves,

ThroTTle values

[Metric | Clusters 0] 3 4 16 32 64 | 128 | 200k
MaxQWgt 1 1993 | 1427 348) 312 | 291} 300 306 | 312 324
2 1847 | 1142 748 | 467] 320} 304 | 305 | 318 345

3 2035 | 1801 674 | 556 | 375 | 331 | 324 | 326 382

4 1868 | 1516 761 1 639 | 412 | 352 | 328 | 37! 425

5 1834 | 1626 835 | 767 | 438 1 373 | 359 | 343 400

6 2081 | 1579 898 | 825 | 481 | 391 | 357 { 361 427

7 1884 | 1279 | 1032 | 758 | 505 | 383 | 371 | 369 414

8 1944 1 1451 | 1102 | 834 | 531 434 | 376 | 380 435

LoadImb 1 7051 5091 123 1.1t {101 [1.00]1.00 1 1.00 | 1.00
2 854] 416 274 1 1.81 | 1.26 | 1.14 | 1.04 | 1.00 | 1.00

3 705 6401 250§ 211 4 141 | 1191 1.0511.021 1.01

4 663 | 541 | 282240 158 1.26 1.07 | 1.03 1.01

5 653 5.78 | 3.06 1283166 1.30] 1.11 | 1.02 | 1.01

6 731 | 558 325299) 181|140 1.08)1.02] 1.01

7 668 | 461 | 3.74 12801184 {133]|1.10!1.03] 1.00

8 690] 5.151 39213051194} 143]1.13]1.06| 1.00

Table 2. Expected runtime and load balance quality for varying ThroTTIle values.

MinEX sequentially contracts one vertex at a time. The ad-
vantage of this approach is that a decision can be made each
time a vertex is later refined as to whether it should be as-
signed to another processor. This makes the algorithm more
flexible since the graph does not have to be doubled in size
before this decision could be made. If |V| is the number
of vertices in the mesh, contraction requires O(|V|) steps
which is asymptotically no larger than that of contracting
the mesh sequentially in halves. Once the mesh is suffi-
ciently small, the remaining vertices are reassigned accord-
ing to the partitioning criteria described in Section 3.2.

The mesh is expanded back to its original size through
a refinement process. As each vertex is refined, a decision
is made as to whether or not it should be reassigned. This
decision employs the same partitioning criteria used by the
partitioning algorithm in the previous step. Each coarse ver-
tex reassignment in effect reassigns all of the computational
vertices that the coarse vertex represents.

3.2. Partitioning Criteria

The criteria for deciding whether a vertex should be reas-
signed from one processor to another, is based on two met-
rics: Gain and Minvar. Gain represents the change in
QWgtTOT that would result from a proposed vertex move.
A negative Ga i n would indicate that less total processing is
required after such a vertex reassignment. The partitioning
algorithm favors vertex moves with negative or small Gain
values that reduce or minimize overall system load.

MinVar is computed using the workload (i.e. OWgt(p))
for each processor p and the smallest load of any processor

(MinQWgt) in accordance with the following formula:

Minvar = Y (QWgt(p) ~ MinQWgt)2.
r

Basically, MinVar computes the variance of processor
workloads from that of the most lightly-loaded processor.
The objective is to initiate vertex moves that lower this
value. Since processors with large QWgt(p) values will
have large MinVar components, this criteria tends to move
vertices away from processors that have high runtime re-
quirements. AMinVar is the change in the MinVar value
after moving a vertex from one processor to another. A neg-
ative value indicates that Minvar has been reduced.

Let us now describe how the partitioning decisions are
made. For each vertex, v, consider all edges to adjacent
vertices that are assigned to other processors. Compute the
Gain and MinVar values that would result from moving
v to each of the adjacent processors. The move involves the
adjacent vertex that has the smallest value of Gain as long
as AMinvar <0and —Gain/AMinvar < ThroTTle,
where ThroTT1e is a user-supplied parameter. To increase
efficiency, the program utilizes a minimum heap with point-
ers to vertex locations to quickly find the best move and di-
rectly delete entries without searching.

Conceptually, ThroTTle acts as a gateway that limits
increases in Gain based upon how much of an improve-
ment in MinvVar can be achieved. Table 2 shows how
varying ThroTT1e values affects the expected application
runtime (MaxQWgt) and load balance quality (LoadImb).
The MaxQWgt entries are non-dimensionalized values in
thousands. These results were obtained by running the ex-

periments described in Section 4. Table 2 assumes a net-
work of 32 homogeneous processors distributed over one to
eight IPG nodes (clusters). The inter-cluster interconnect
speed is assumed to be a third of the intra-cluster speed.
Results show that a ThroTT1e of 64 produces the lowest
overall MaxQWgt, and that larger ThroTTle values im-
prove LoadImb. Experiments with other network sizes us-
ing this same application have shown that ThroTTle gen-
erally converges at values between P and 2P. Note also
that for large values of ThroTT1e, better LoadImb does
not necessarily imply lower MaxQWgt.

3.3. Latency Tolerance

The following steps illustrate how communication and
data redistribution can be reduced or eliminated.

Step 1: Initiate send of all data sets to be redistributed.
Step 2: For each edge (v, w), where the data set for vertex
v is local to processor p and the data set for vertex w is
local to another processor g, initiate send of communication
data. The metric C’omm},v'w) represents the cost of this
communication. Also initiate send of communication data
needed by adjacent processors.

Step 3: Process vertices that are not waiting for incoming
transmissions.

Step 4: Receive and unpack any remapped data sets des-
tined for this processor.

Step 5: Receive and unpack communication data destined
for this processor.

Step 6: Repeat Steps 2 through 5 until all vertices are pro-
cessed.

These steps implement a strategy where processors dis-
tribute data sets and communication data as early as possi-
ble. The processing of internal vertices can then take place
while waiting for expected incoming messages. As data sets
and communication data are received, additional communi-
cations can be initiated and vertices processed. The most
optimistic expectation of this strategy is that the process-
ing activity can entirely hide the data redistribution cost and
communication latency. At the other extreme, the most pes-
simistic view is that no latency tolerance is achieved. Exper-
iments simulating both views to analyze the effect of latency
tolerance on our test application are described in Section 4.

3.4. Data Structures

The following data structures are used by the MinEX
partitioner to perform its multilevel algorithm:

e Mesh: The adaptive mesh has the format
{IV|, |E|, vTot, *VMaP, *VList, *EList} where
|V] is the number of active vertices in the mesh,
|E| is the number of edges in the mesh,

vTot is the total number of vertices (including merged
vertices),

*VMaP is a pointer to the list of active vertices,
*yList is a pointer to the complete list of vertices,
and

*EList is a pointer to the list of edges.

e vmaP: A list of active vertices. None of these vertices
have been compressed through multilevel partitioning.

e VList: A complete list of vertices. Each vertex, v, is
defined by a VList record as
{Wgt, Remap,, |e|, e, merge, lookup, xumap, *
heap, border} where
Wat is the computational cost to process v,
Remap, is the redistribution cost to copy the data set
associated with v to another processor from p,
|e] is the number of adjacent edges associated with v,
*e is a pointer to the first edge associated with v (sub-
sequent edges are stored in contiguous memory loca-
tions),
merge is the vertex that was merged with v during
a contraction operation (set to —1 if no merge took
place),
lookup is the active vertex that contains v after a series
of contraction operations (set to —1 if no merges took
place),
*vmap is a pointer to the: position of v in the active
vertex table,
xheap is a pointer to the heap entry that relates to ver-
tex, v, and represents a potential reassignment of v,
and border is a boolean flag indicating whether v is
adjacent to vertices assigned to other processors.

e EList: A list of edges in the mesh. Each record is de-
fined as {w, Commy,,)} Where (v, w) is an edge and
Commy,,y is the associated communication weight.
Vertex v has an entry in VList and edges are located
using the xe pointer.

e Heap: The heap of potential vertex reassignments.
Each heap record is defined as {Gain, AMinVar,
v, p} which specifies the Gain and AMinvar that
would result from reassigning vertex v to processor p.
The min-heap is keyed by the Gain value.

e Stack: The stack of compressed vertex pairs,
(vy,v2). These vertices are refined in reverse order
from the order that they were compressed. This graph
contraction technique is described below.

3.5. Graph Contraction

The partitioner selects sets of randomly chosen pairs
of vertices that are assigned to the same processor p.

From this set. the vertex pair, (v, w), that has the largest
Comumy,. ,)/(Remapy + Remapy) value is merged. This
formula attempts to find edges with large communication
costs while minimizing the potential data redistribution
overhead. The motivation behind this strategy is to arrive
at a contracted mesh with a small edge cut and a small data
distribution cost.

To contract a vertex v, a merged vertex record, M, is
created and the edge (v, w) is collapsed. The edges of M
are generated by utilizing the edge lists of vertices v and w.
VMap is adjusted to contain M and to remove v and w; [V]
is decremented and vTot is incremented; |E] is increased
by the number of edges created for M and the pair (v, w)
is pushed onto Stack.

This contraction procedure is implemented using a set
union/find algorithm so that edges of existing vertices can
remain unchanged. For example, if an existing vertex is
adjacent to v, accesses to its EList record will check
whether v has been merged. If it has, lookup will be ac-
cessed to quickly find the appropriate merged vertex. If
lookup is not current (i.e., lookup > vTot), the union/find
algorithm will search the chain of vertices beginning with
merge in order to update the lookup value, so that subse-
quent lookups can be done efficiently. Pseudo code describ-
ing the union/find procedure is given in Fig, 2.

Procedure Find (v)

If (merge == —1) Return v

If (lookup ! = —1) And (lookup <= vTot)
Then Return lookup = Find (lookup)
Else Return lookup = Find (merge)

Figure 2. The union/find algorithm.

3.6. Partitioning the Contracted Graph

Once the graph contraction process is complete, the par-
titioning can be performed. Because the number of vertices
is greatly reduced, the MinEX algorithm can execute very
efficiently. The algorithm considers every remaining vertex
of the mesh to find potential reassignments that will reduce
Gain and Minvar as described in Section 3.2. All poten-
tial vertex reassignments are added to the min-heap. Actual
reassignments are executed in heap order. As a reassign-
ment is executed, the heap is adjusted to reflect the new
partition status.

3.7. Graph Expansion
The graph is restored to its original size by expanding

pairs of vertices in an order reversed from which they were
merged. The Stack data structure controls the order. As

pairs of vertices, (v, w), are refined, merged edges and ver-
tices are deallocated. The merge and lookup vertex num-
bers are also adjusted in the vertex table. The VMap table
is updated to delete the merged vertex, A, and to add v and
w; [V is incremented and vTot is decremented; and | E| is
decreased by the number of edges created for M. After each
refinement, a decision is made as to whether a partition can
be improved by reassigning v or w. When reassignments
are made, adjacent border vertices are also considered.

4. Performance Results

The MinEX partitioner was executed with actual appli-
cation data to simulate an adaptive mesh computation for
a variety of system configurations. Individual runs model
networks with a particular number of processors P, number
of IPG nodes/clusters C, ThroTT1e values, and intercon-
nect speeds I. In our experiments, P was varied from 2
to 2048, C was varied from 1 to 8, ThroTT1e was varied
to find the optimal value for minimizing runtime, and I was
varied to simulate both high-speed cluster interconnects and
low-speed wide area network connections.

Based on performance studies reported in [12, 20}, typ-
ical communication latency and bandwidth slowdown from
integrated clusters to configurations connected through a
high-speed interconnect are in the range of 3 to 100. Wide
area network connections are 1,000 to 10,000 times slower
than the internal intra-connects of a single cluster. In ourex-
periments, we have assumed that the intra-cluster commu-
nication speed is normalized to a value of 1. Simulations
of inter-cluster communication assumed slowdown factors
of 3, 10, 100, and 1,000. To simplify the analysis, we have
assumed that individual processors are homogeneous and
divided as evenly as possible among the clusters.

Table 3 shows results of experimental runs analyzing
the effect of varying numbers of clusters and intercon-
nect speeds, assuming P = 32 homogeneous processors.
The interconnect speeds indicate the slowdown factor rela-
tive to the intra-cluster communication speed. To be con-
sistent with Tables 1 and 2, runtimes are shown as non-
dimensionalized values in thousands. Table 3(a) charts the
experimental results when no latency tolerance is achieved,
while Table 3(b) assumes maximum latency tolerance. The
following conclusions can be drawn from the experiments.

As the interconnect speed is reduced, the slowdown ex-
perienced by utilizing additional clusters increases dramati-
cally. For example, the runtime metric in Table 3(a) is 4,102
when two clusters and an interconnect slowdown of 1000 is
assumed; however, the metric is 93,566 when eight clusters
are assumed. Thus, performance deteriorates by almost a
factor of 22.8. If we consider an interconnect slowdown of
3, the performance degradation is only 1.3. The same pat-
tern holds true in Table 3(b).

Interconnect Speeds

Interconnect Speeds

Clusters 3 10 100 1000
l 473 | 473 473 473
2 728 | 863 1228 | 4102
3 755 | 1168 | 2783 | 18512
4 791 | 1361 3667 | 25040
5 854 | 1649 | 5677 | 53912
6 915} 1717 | 8521 | 76169
7 956 | 1915 | 10958 | 80568
8 968 | 2178 | 11492 | 93566

Clusters 3 10 100 1000
I 287 287 | 287 287
2 298 469 | 763 3941
3 322 | 548 | 2386 | 12705
4 328 | 680 | 3297 | 21888
5 336 | 768 | 4369 | 33092
6 345 1 856 | 5044 | 52668
7 352 | 893 | 5480 | 61079
8 357 | 1048 | 5721 | 61321

(a) No latency tolerance

(b) Maximum latency tolerance

Table 3. Expected runtime for varying cluster sizes (P = 32) and interconnect speeds.

For the mesh application considered, Globus over low-
speed networks such as the Internet is not a viable approach
assuming current technology. In fact, the interconnection
speed must improve by at least an order of magnitude be-
fore this approach could be useful. At present, applications
would have to have little runtime communication and data
sct remapping for low-speed wide area networks to be prac-
tical interconnects.

We can compare the effectiveness of latency tolerant al-
gorithms to those without latency tolerance, by measuring
runtimes of each approach as the number of clusters and
interconnect speeds are varied. The performance improve-
ments using latency tolerance increase dramatically as the
number of clusters increases. This can be verified by com-
paring the same rows from Tables 3(a) and 3(b). For exam-
ple, consider the results with eight clusters. The runtime im-
provements comparing latency tolerant algorithms to those
with no latency tolerance are factors of 2.7,2.1,2.0,and 1.5,
respectively, for interconnect slowdowns of 3, 10, 100, and
1000. In contrast, results with two clusters indicate gains of
2.4, 1.8, 1.6, and 1.0, respectively, for the same interconnect
slowdowns. Results clearly demonstrate that utilizing more
clusters give greater runtime improvement when employing
latency tolerance.

The same is also true when the interconnect slowdowns
are varied (this can be analyzed by comparing the corre-
sponding table columns). For example, with an intercon-
nect slowdown of 1000, the improvements in runtime by
utilizing latency tolerance are 1.6, 1.0, 1.5, 1.1, 1.6, 1.4,
1.3, and 1.5, respectively, for one to eight clusters. On the
other hand, with an interconnect slowdown of 10, the cor-
responding improvements are 1.6, 1.8, 2.1, 2.0, 2.1, 20,
2.1, and 2.1. In this case, results surprisingly demonstrate
that latency tolerance has a bigger payoff when intercon-
nect slowdowns are smaller. Additional investigations are
required to verify/counter this observation.

For our test application, Globus could be a viable ap-
proach if a high-speed interconnect (slowdown factor be-

tween 3 and 10) between clusters is utilized. Results in Ta-
bles 3(a) and 3(b) comparing cr2 and eight clusters with an
interconnect slowdown of 3 show runtime deterioration fac-
tors of 2.04 and 1.24, respectively. Similar comparisons for
an interconnect slowdown of 10 show deterioration factors
of 4.60 and 3.65, respectively. These factors, being smaller
than the number of clusters, indicate a relative speedup
when the number of clusters increases.

5. Conclusions

We presented a latency-tolerant partitioner, called
MinEX, that not only balances processor workloads but also
minimizes data movement and runtime communication, for
adaptive mesh applications that are executed in a parallel
distributed fashion on the IPG. Additional future experi-
ments that are planned will test MinEX performance in the
context of different application classes and devise metrics
to compare it with other popular partitioning schemes. We
also analyzed the conditions ihat are required for the IPG to
be an effective tool for such distributed computations. Our
results demonstrated that MinEX is a viable load balancer
provided the IPG nodes are connected by a high-speed asyn-
chronous interconnection network. We are currently imple-
menting a parallel version of MinEX. An area of further
research includes mathematical analysis of latency toler-
ance and performance slowdowns based on the interconnect
speed, the numbers of clusters employed, and the topology
of the mesh.

References

(1} D. Abramson, R. Sosic, J. Giddy, and R. Hall, “Nim-
rod: A tool for performing parameterized simulations
using distributed workstations,” 4th IEEE Symposium
on High Performance Distributed Computing, 1995.

(2]

(3]

(4)

(51

(6]

{7]

(8]

(9]

(10]

[t1]

[12]

S. Barnard, R. Biswas, S. Saini, R. Van der Wijn-
gaart. M. Yarrow, and L. Zechtzer, “Large-scale dis-
tributed computational fluid dynamics on the Informa-
tion Power Grid using Globus,” 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999,
60-67.

R. Biswas, S.K. Das, D.J. Harvey, and L. Oliker, “*Par-
allel dynamic load balancing strategies for adaptive
irregular applications,” Applied Mathematical Mod-
elling, 25 (2000) 109-122.

H. Casanova and J. Dongarra, “NetSolve: A net-
work server for solving computational science prob-
lems,” Technical Report CS-95-313, University of
Tennessee, 1995.

J. Cryzyk, M. Meaznier, and J. More, “The Network-
Enabled Optimization System (NEOS) server,”
Preprint MCS-P615-0996, Argonne National Labora-
tory, 1996.

G. Cybenko, “Dynamic load balancing for distributed-
memory multiprocessors,” Journal of Parallel and
Distributed Computing, 7 (1989) 279-301.

S.K. Das, D. Harvey, and R. Biswas, “Parallel process-
ing of adaptive meshes with load balancing,” 27th In-
ternational Conference on Parallel Processing, 1998,
502-509. (Extended version currently under revision
for IEEE Transactons on Parallel and Distributed Sys-
tems.)

T. Defanti, M.D. Brown, and R. Stevens, “Virtual
reality over high-speed networks,” IEEE Computer
Graphics and Applications, 16 (1996) 4243,

T. Defanti, 1. Foster, M. Papka, R. Stevens, and T.
Kuhifuss, “Overview of the [-Way wide area visual
supercomputing,” International Journal of Supercom-
puter Applications, 10 (1996) 123—130.

D. Diachin, L. Freitag, D. Heath, J. Herzog, W.
Michels, and P. Plassmann, “Remote engineering tools
for the design of pollution control systems for com-
mercial boilers,” International Journal of Supercom-
puter Applications, 10 (1996) 208-218.

T. Disz, M. Papka, M. Pellegrino, and R. Stevens,
“Sharing visualization experiences among remote vir-
tual environments,” International Workshop of High
Performance Computing for Computer Graphics and
Visualization, Springer-Verlag, 1995, 217-237.

1. Foster and N. Karonis, “A grid-enabled MPI: Mes-
sage passing in heterogeneous distributed computing
systems,” Supercomputing' 98, 1998.

[13]

(14]

(15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

[23]

I. Foster and C. Kesselman, “Globus: A metacomput-
ing infrastructure toolkit,” International Journal of Su-
percomputer Applications, 11 (1997) 115-128. (Also
athttp://www.globus.org.)

I. Foster and C. Kesselman, The Grid: Blueprint for
a New Computing Infrastructure, Morgan Kaufmann,
1999.

A. Grimshaw, W. Wulf, and the Legion team, “The
Legion vision of a worldwide virtual computer,” Com-
munications of the ACM, 40 (1997) 39-45.

B. Hendrickson and R. Leland, “A multilevel al-
gorithm for partitioning graphs,” Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

G. Karypis and V. Kumar, “Parallel multilevel k-way
partitioning scheme for irregular graphs,” Technical
Report 96-036, University of Minnesota, 1996.

J. Leigh, A. Johnson, and T. DeFanti, “CAVERN: A
distributed architecture for supporting scalable persis-
tence and interoperability in collaborative virtual en-
vironments,” Virtual Reality Research, Development
and Applications, 2 (1997) 217-237.

M. Litzdow, M. Livny, and M.W. Mutka, “Condor —
a hunter of idle workstations,” 8th International Con-
Jference of Distributed Computing Systems, 1988, 104—
[11.

S. Nog and D. Kotz, “A performance comparison of
TCP/IP and MPI on FDDI, fast Ethernet, and Eth-
ernet,” Technical Report PCS-TR95-273, Dartmouth
College, 1996.

L. Oliker and R. Biswas, “PLUM: Parallel load bal-
ancing for adapiive unstructuied meshes,” Journal of
Parallel and Distributed Computing, 52 (1998) 150-
177.

K. Schloegel, G. Karypis, and V. Kumar, “Multi-
level diffusion schemes for repartitioning of adaptive
meshes,” Journal of Paralle! and Distributed Comput-
ing, 47 (1997) 109-124.

C. Walshaw, M. Cross, and M. Everett, “Parallel dy-
namic graph partitioning for adaptive unstructured
meshes,” Journal of Parallel and Distributed Comput-
ing, 47 (1997), 102-108.

